skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferguson, Sophie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Coral reefs are biodiverse marine ecosystems that are undergoing rapid changes, making monitoring vital as we seek to manage and mitigate stressors. Healthy reef soundscapes are rich with sounds, enabling passive acoustic recording and soundscape analyses to emerge as cost-effective, long-term methods for monitoring reef communities. Yet most biological reef sounds have not been identified or described, limiting the effectiveness of acoustic monitoring for diversity assessments. Machine learning offers a solution to scale such analyses but has yet to be successfully applied to characterize the diversity of reef fish sounds. Here we sought to characterize and categorize coral reef fish sounds using unsupervised machine learning methods. Pulsed fish and invertebrate sounds from 480 min of data sampled across 10 days over a 2-month period on a US Virgin Islands reef were manually identified and extracted, then grouped into acoustically similar clusters using unsupervised clustering based on acoustic features. The defining characteristics of these clusters were described and compared to determine the extent of acoustic diversity detected on these reefs. Approximately 55 distinct calls were identified, ranging in centroid frequency from 50 Hz to 1,300 Hz. Within this range, two main sub-bands containing multiple signal types were identified from 100 Hz to 400 Hz and 300 Hz–700 Hz, with a variety of signals outside these two main bands. These methods may be used to seek out acoustic diversity across additional marine habitats. The signals described here, though taken from a limited dataset, speak to the diversity of sounds produced on coral reefs and suggest that there might be more acoustic niche differentiation within soniferous fish communities than has been previously recognized. 
    more » « less
  2. Almost 400 years ago, Rubens copied Titian's The Fall of Man, albeit with important changes. Rubens altered Titian's original composition in numerous ways, including by changing the gaze directions of the depicted characters and adding a striking red parrot to the painting. Here, we quantify the impact of Rubens's choices on the viewer's gaze behavior. We displayed digital copies of Rubens's and Titian's artworks—as well as a version of Rubens's painting with the parrot digitally removed—on a computer screen while recording the eye movements produced by observers during free visual exploration of each image. To assess the effects of Rubens's changes to Titian's composition, we directly compared multiple gaze parameters across the different images. We found that participants gazed at Eve's face more frequently in Rubens's painting than in Titian's. In addition, gaze positions were more tightly focused for the former than for the latter, consistent with different allocations of viewer interest. We also investigated how gaze fixation on Eve's face affected the perceptual visibility of the parrot in Rubens's composition and how the parrot's presence versus its absence impacted gaze dynamics. Taken together, our results demonstrate that Rubens's critical deviations from Titian's painting have powerful effects on viewers’ oculomotor behavior. 
    more » « less
  3. The settlement of coral larvae is an important process which contributes to the success and longevity of coral reefs. Coral larvae often recruit to benthic structures covered with crustose coralline algae (CCA) which produce cues that promote settlement and metamorphosis. The PeysonneliaceaeRamicrustaspp. are red-brown encrusting alga that have recently become abundant on shallow Caribbean reefs, replacing CCA habitat, overgrowing corals and potentially threatening coral recruitment. In order to assess the threat ofRamicrustato coral recruitment, we compared the survival and settlement ofPorites astreoidesandFavia fragumlarvae to 0.5 – 2 mg ml-1solutions ofRamicrustasp. or CCA as well as sterile seawater (control). In all cases larval mortality was extremely high in theRamicrustatreatments compared to the CCA and control treatments. We found 96% (± 8.9% standard deviation, SD) mortality ofP. astreoideslarvae when exposed to solutions ofRamicrustaand 0 - 4% (± 0 - 8.9% SD) mortality in the CCA treatments. We observed 100%F. fragumlarval mortality when exposed toRamicrustaand 5 – 10% (± 10 – 20% SD) mortality in the CCA treatments. Settlement or surface interaction of larvae in the CCA treatments was 40 - 68% (± 22 - 37% SD) forP. astreoidesand 65 - 75% (± 10 - 19% SD) forF. fragum. TwoP. astreoideslarva that survivedRamicrustaexposure did settle/surface interact, suggesting that some larvae may be tolerant toRamicrusta. These results suggest thatRamicrustais a lethal threat to Caribbean coral recruitment. 
    more » « less